

LA-UR-20-23263

Approved for public release; distribution is unlimited.

Title: Mechanical Metallurgy of Plutonium Metal, Alloys, and Allotropes

Author(s): Stevens, Michael Francis

Intended for: Actinide Science and Technology Lecture Series (WebEx seminar open to

uncleared LANL participants)

Issued: 2020-04-29

Mechanical Metallurgy of Plutonium Metal, Alloys, and Allotropes

Michael F. Stevens

May 5, 2020 Actinide Science and Technology Lecture Series

"Mechanical Metallurgy" of Plutonium

- Talk will highlight the mechanical properties of plutonium, but with some discussion of the governing (and often unusual!) underlying metallurgical fundamentals
- In the interest of time, this talk will focus on unalloyed plutonium metal, its temperature allotropes, and plutonium alloyed to stabilize the delta phase
- Most of the featured work is taken from the literature; references are provided for both attribution and further reading.

Plutonium is both Complex and Unstable to changes to environment – basis is unique electronic structure! See Hecker, S. S., Los Alamos Science, 2000, 26, 290-335

Length Change and Crystal Structures in Pu

Slide 3

Tensile Properties of α and δ Pu

Mechanical Properties are Very Sensitive to Crystal Structure

From Hecker, S. S.; Stevens, M. F. Los Alamos Science, 2000, 26, 336-355

Tension

From Gardner, H. R.; Mann, I. B. Mechanical Property and Formability Studies on Unalloyed Plutonium. In Plutonium 1960: The Proceedings of the Second International Conference on Plutonium Metallurgy, Grenoble, France, April 19–22, 1960; Grison, E., Lord, W. B. H., Fowler, R., Eds.; Cleaver-Hume Press: London; pp 513–570.

General observations of α -phase deformation

- Negligible macroscopic ductility in tension generally attributable to presence of microcracks (stress concentrators) resulting from $\beta \rightarrow \alpha$ volume collapse during solidification
- Microscopic fracture surfaces reveal extensive, but shallow microvoid coalescence; stress induced transformation conjectured.
- Exhibits decreased hardness with decreasing grain size
- Anomalously high homologous temperature ~ 0.53¹ at RT allows for a variety of non-conserving deformation mechanisms, especially in fine grained samples; enhanced ductility results
- Extruded, fine-grained alpha displays enhanced tensile ductility; Merz² hypothesized that fine grain structure (grain boundary sliding) and absence of microcracks responsible.

¹Nelson, R. D. Bierlein, T. K., Bowman, F. E., USAEC Report BNWL-32 (1965). ²Merz, M. D. *J. Nucl. Mater.* 1971, 41, 348–350.

Tensile Behavior of α - Plutonium

From Gardner, H. R., Hanford Atomic Products Operation, General Electric Co., Unpublished Data, April 1962.

UNCLASSIFIED

Typical Grain Structure of As-Cast Alpha Pu Grain Size – 47 μm Density – 19.54 g/cc

As polished surface of As-Cast Alpha Pu
Density – 19.56 g/cc
Microcracks and voids evident

From Gardner, H. R.; Mann, I. B. Mechanical Property and Formability Studies on Unalloyed Plutonium. In Plutonium 1960: The Proceedings of the Second International Conference on Plutonium Metallurgy, Grenoble, France, April 19–22, 1960; Grison, E., Lord, W. B. H., Fowler, R., Eds.; Cleaver-Hume Press: London; pp 513–570.

Microcracking in α-phase Plutonium -**Impurity and Processing Effects**

Impurities known to reduce microcracking through secondary phase formation (e.g. Pu₆Fe)¹

- ρ = 19.64 g/cc Mold T 0°C
- Harbur, et al.² found that chill casting could suppress microcracks through optimization of transformation front.
- Extrusion of α -phase Pu also results in enhanced ductility³ due to closure of microcracks and grain boundary sliding

 ρ = 19.79 g/cc Mold T -80°C

²Harbur, D. R.; Romero, J. W.; Anderson, J. W.; Maraman, W. J. J. Nucl. Mater. 1968, 25, 160–165. ³Merz, M. D. J. Nucl. Mater. 1971, 41, 348–350. **UNCLASSIFIED**

¹Gardner, H. R.; Mann, I. B. Mechanical Property and Formability Studies on Unalloyed Plutonium. In Plutonium 1960: The Proceedings of the Second International Conference on Plutonium Metallurgy, Grenoble, France, April 19-22, 1960.

Enhanced ductility in extruded, fine grain α – Pu

Typical grain size -1 to 3 μm

From Merz, M. D.; Allen, R. P. J. Nucl. Mat. 1973, 46, 110-112.

From Merz, M. D. J. Nucl. Mat. 1971, 41, 348-350.

Evidence for $\alpha \rightarrow \delta$ Transformation under Hydrostatic Tension

— EST.1943 ——

Tensile fracture surface

Back surface Mid-section zone Crack tió

Schematic showing triaxial stress zone at loaded crack tip

(c) 600 remperature (K) 500 400 Pressure (kbar)

Torsion fracture surface

Further Evidence for $\alpha \rightarrow \delta$ **Transformation during Hydrostatic Tension**

From Hecker, S. S.; Stevens, M. F. Los Alamos Science, 2000, 26, 336-355

Creep Deformation of Plutonium

From Nelson, R. D. Steady-State Creep of Plutonium. in *Plutonium 1965: Proceedings of the Third International Conference on Plutonium: London 1965*; Kay, A. E., Waldron, M. B., Eds.; Chapman & Hall: London, 1967; pp 564–570.

Creep Deformation of Plutonium

Lower temp allotrope has higher creep rate at equiv. stress level!

From Nelson, R. D. Steady-State Creep of Plutonium. in *Plutonium 1965: Proceedings of the Third International Conference on Plutonium: London 1965*; Kay, A. E., Waldron, M. B., Eds.; Chapman & Hall: London, 1967; pp 564–570.

Creep Deformation of Plutonium

 β_{γ} always has a lower creep rate than β_{α}

From Nelson, R. D. Steady-State Creep of Plutonium. in *Plutonium 1965: Proceedings of the Third International Conference on Plutonium: London 1965*; Kay, A. E., Waldron, M. B., Eds.; Chapman & Hall: London, 1967; pp 564–570.

- Lowest density of the solid state allotropes
- Face-centered cubic crystal structure
- Soft, ductile; comparable to 1100 Al
- Stabilized to RT by several, usually trivalent alloying elements – Al, Si, Ga, Ce, Am
- High elastic anisotropy
- Anomalous thermal expansion

Small Ga additions stabilize the δ -phase (3.4 at. % Ga)

Mitchell, J. N., Gibbs, F. E., Zocco, T. G., and Pereyra, R. A. (2001) Metall. Mater. Trans. A, 32(3A), 649–59.

As-cast

460°C -

20 hrs

460°C – 2 hrs

460°C – 720 hrs

Polar plot of Youngs modulus vs. lattice direction in a Pu – 1 wt. % Ga single crystal

From Ledbetter, H. M.; Moment, R. L. Acta Metall. 1976, 24, 891–899.

Ga effect on Flow Stress in δ -Pu

From Miller, D. C.; White, J. S. J. Nucl. Mat. 1965, 17, 54-59.

Recent Studies Expanded on Pu-Ga Alloy Behavior

Combined effect of temperature, strain rate, thermomechanical processing, and temperature on plastic flow of Pu – 1 wt.% Ga alloys. From Robbins, *J. Nucl. Mater.* **2004**, 324, 125-133.

Annealing Response of δ -phase Pu Recrystallization Kinetics

Homogenized, Cold Rolled Pu - 1 wt %

From Gill, S. M.; BNWL-SA-380, Conf-651119-4, October 22, 1965

Tensile Flow of Pu-1 wt% Ga Alloy vs Strain Rate and Thermomechanical Treatment

From Hecker, S. S.; Morgan, J. R. Effect of Strain Rate on the Tensile Properties of α - and δ -Stabilized Plutonium, in *Plutonium 1975 and Other Actinides: Proceedings of the Conference in Baden Baden, September 10–13, 1975: 5th International Conference on Plutonium and Other Actinides*; Blank, H., Lindner, R., Eds.; North-Holland Publishing Company: Amsterdam, 1976; p 703.

Takeaways

- Mechanical properties of plutonium are highly dependent on crystal structure, processing history, and alloy content
- Pure plutonium mechanical properties are strongly influenced by the low-symmetry crystal structure, but also defect content, homologous temperature, processing history, and perhaps phase stability
- Stabilized delta phase plutonium is well adapted for engineering applications

Compression

From Gardner, H. R.; Mann, I. B. Mechanical Property and Formability Studies on Unalloyed Plutonium. In Plutonium 1960: The Proceedings of the Second International Conference on Plutonium Metallurgy, Grenoble, France, April 19–22, 1960; Grison, E., Lord, W. B. H., Fowler, R., Eds.; Cleaver-Hume Press: London; pp 513–570.

Classical Molecular Dynamics Predictions of Elastic Properties

- Accurate MEAM potentials give good agreement of elastic properties predictions with empirical data
- Results extrapolated to predict effect of age induced atomic scale defects (i.e. vacancies, He atoms) on elastic and plastic properties

From Dremov, V. V.; Karavaev, A. V.; Sapozhnikov, F. A.; Vorobyova, M. A.; Preston, D. L.; Zocher, M. A. *J. Nucl. Mater.* 2011, 414, 471–478. Experimental data from A. Migliori et al., *J. Alloys Compd.* 444–445 (2007) 133–137.

Fatigue behavior of δ -Stabilized Plutonium

From Gardner, H. R. Fatigue Behavior of Plutonium-1 wt % Gallium δ-Stabilized Plutonium. In *Plutonium 1965: Proceedings of the Third International Conference on Plutonium: London 1965*; Kay, A. E., Waldron, M. B., Eds.; Chapman & Hall: London, 1967; pp 535–542.

